首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   8篇
化学   8篇
  2024年   2篇
  2023年   1篇
  2022年   1篇
  2019年   1篇
  2013年   3篇
排序方式: 共有8条查询结果,搜索用时 250 毫秒
1
1.
以廉价的椰壳为原料制备了高比表面积的多孔碳材料,然后在密闭的反应釜中以硝酸蒸汽对多孔碳材料进行了后处理,制备了亲水性更好的多孔碳材料。采用扫描透射电子显微镜(TEM)、物理吸附、X射线粉末衍射(XRD)、拉曼光谱(Raman)和接触角测试对材料的微观形貌、孔道结构、组成和亲水性进行了表征,探究了不同温度下硝酸蒸汽对多孔碳材料的形貌、结构的影响,并采用循环伏安法、恒电流充放电法和交流阻抗法考察了多孔碳材料的超级电容性能。结果表明,经过硝酸蒸汽处理后的多孔碳材料的比表面积和孔体积均有所降低,且随着处理温度的升高,降低得更加明显,而亲水性却越来越好。电化学测试结果表明,经过100℃硝酸蒸汽处理的多孔碳材料(CSC-100)具有最佳的超级电容性能。在以6 mol·L-1 KOH为电解液的三电极体系中,当电流密度为0.5 A·g-1时CSC-100的比电容可达452.9 F·g-1,而未经硝酸蒸汽处理的多孔碳材料(CSC)的比电容仅为350.4 F·g-1。电容贡献分析表明CSC-100良好的亲水性和表面官能团不仅提高了双电层电容,也提高了赝电容。  相似文献   
2.
以聚氨酯发泡剂为碳源和氮源,以氢氧化钾为活化剂,采用一步化学活化法制备了具有高比表面积的氮掺杂活性炭。采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、N_2吸附-脱附、X射线粉末衍射(XRD)、拉曼光谱(Raman)、光电子能谱(XPS)对碳材料的微观形貌、组成、比表面积和孔道结构进行了表征。结果表明,在700℃活化的碳材料FC700具有最高的比表面积(2 740 m~2·g~(-1))和最大的孔容(1.27 cm~3·g~(-1)),这归因于KOH与泡沫的充分相互作用。在以6.0 mol·L~(-1)KOH为电解液的三电极体系中,当电流密度为0.5 A·g~(-1)时,其比电容达到了452 F·g~(-1)。在组装的对称超级电容器中,其比电容达到了344 F·g~(-1),功率密度为247 W·kg~(-1)时对应的能量密度为11.9 Wh·kg~(-1)。在10 000次循环后电容保持率为98.03%,表现出优异的稳定性。FC700的优异电化学性能可能归因于高的比表面积,大的孔体积和氮原子的掺杂。  相似文献   
3.
以胶态SiO2纳米粒子为模板,壳聚糖为碳源,ZnCl2为活化剂,制备了具有不同比表面积和孔体积的氮掺杂介孔碳。采用多种表征手段对碳材料的微观形貌、比表面积和孔道结构进行了表征,探究了壳聚糖与SiO2纳米粒子的比例以及ZnCl2活化剂对碳材料孔体积和比表面积的影响。结果表明,在未使用活化剂时碳材料(CSi-1.75)的孔体积高达4.53 cm3·g-1,但其比表面积最小(729 m2·g-1);使用ZnCl2作为活化剂制备的碳材料(CSi-1.75-Zn)比表面积为1032 m2·g-1,但其孔体积下降到1.99 cm3·g-1,且具有最多的吡啶氮和吡咯氮。在以6.0 mol·L-1 KOH为电解液的三电极体系中,当电流密度为0.5 A·g-1时,CSi-1.75-Zn的比电容为344 F·g-1,而CSi-1.75的比电容仅为255 F·g-1。这表明碳材料的比表面积对超级电容性能影响最大,而孔体积影响较小。电容贡献分析结果表明,相对于CSi-1.75,CSi-1.75-Zn的双电层电容和赝电容都得到了提高,这表明更大的比表面积和更多的吡啶氮和吡咯氮有利于提高碳材料的超级电容性能。  相似文献   
4.
以胶态SiO2纳米粒子为模板,壳聚糖为碳源,ZnCl2为活化剂,制备了具有不同比表面积和孔体积的氮掺杂介孔碳。采用多种表征手段对碳材料的微观形貌、比表面积和孔道结构进行了表征,探究了壳聚糖与SiO2纳米粒子的比例以及ZnCl2活化剂对碳材料孔体积和比表面积的影响。结果表明,在未使用活化剂时碳材料(CSi-1.75)的孔体积高达4.53 cm3·g-1,但其比表面积最小(729 m2·g-1);使用ZnCl2作为活化剂制备的碳材料(CSi-1.75-Zn)比表面积为1 032 m2·g-1,但其孔体积下降到1.99 cm3·g-1,且具有最多的吡啶氮和吡咯氮。在以6.0 mol·L-1KOH为电解液的三电极体系中,当电流密度为0.5 A·g-1时,CSi-1.75...  相似文献   
5.
以廉价的胶态二氧化硅为模板,蔗糖为碳源,硫酸为预碳化试剂和硫源,通过硬模板法制备了相对廉价的硫掺杂多孔碳(SSC-TT℃代表碳化温度)材料。采用多种表征方法对多孔碳材料的微观形貌、孔道结构、比表面积和表面硫物种进行了表征,探究了硫酸和碳化温度对多孔碳材料的微观形貌、孔道结构和比表面积的影响。结果表明,碳化温度对碳的孔结构、比表面积和硫元素的含量有显著的影响,其中900℃碳化得到的样品SSC-900具有最大的比表面积、孔体积和比电容,远高于未加入硫酸制备的碳材料SC-900,表明硫酸的加入可以提高碳材料的比表面积、孔体积,进而提高碳材料的比电容。与昂贵的有序介孔碳CMK-3相比,SSC-900具有成本更低、孔径更大和电容性能更好的优点。在以6.0 mol·L-1 KOH为电解质的三电极体系中,在0.5 A·g-1的电流密度下,SSC-900的比电容可以达到357 F·g-1,而SC-900和CMK-3的比电容分别仅为152和266 F·g-1。电容贡献分析表明,SSC-900的双层电容值和赝电容值均高于SC-900。此外,SSC-900在0.5 A·g-1的电流密度下循环10 000次后仍能保持98.4%的初始比电容。  相似文献   
6.
以蔗糖为碳源,尿素为氮源,草酸钾为活化剂,通过简单的研磨和高温碳化制备了具有超高比表面积(大于3 000 m2·g-1)的氮掺杂多孔碳材料。采用多种手段对多孔碳材料的微观形貌、比表面积、孔结构和表面氮物种进行了表征,探究了不同温度下草酸钾和尿素对碳材料的比表面积、氮含量和超级电容性能的影响。结果表明,仅使用草酸钾作为活化剂制备的碳材料KC-800 的比表面积为 1 114 m2·g-1,而同时使用草酸钾和尿素制备的样品 KNC-800 的比表面积高达 3 033 m2·g-1。在以 6.0mol·L-1 KOH 为电解液的三电极体系中,当电流密度为 0.5 A·g-1时,KNC-800 的比电容为 405 F·g-1,而 KC-800 的比电容仅为248 F·g-1。这表明草酸钾和尿素的加入显著提高了多孔碳材料的比表面积和超级电容性能。电容贡献分析表明,KNC-800的双电层电容值和赝电容值均高于KC-800。KNC-800在电流密度为0.5 A·g-1时经过10 000次循环后仍能保持98.3%的初始比电容,表现出优异的循环性能。  相似文献   
7.
以蔗糖为碳源、尿素为氮源、草酸钾为活化剂,通过简单的研磨和高温碳化制备了具有超高比表面积(大于3 000 m2·g-1)的氮掺杂多孔碳材料。采用多种手段对多孔碳材料的微观形貌、比表面积、孔结构和表面氮物种进行了表征,探究了不同温度下草酸钾和尿素对碳材料的比表面积、氮含量和超级电容性能的影响。结果表明,仅使用草酸钾作为活化剂制备的碳材料KC-800的比表面积为1 114 m2·g-1,而同时使用草酸钾和尿素制备的样品KNC-800的比表面积高达3 033 m2·g-1。在以6.0mol·L-1KOH为电解液的三电极体系中,当电流密度为0.5 A·g-1时,KNC-800的比电容为405 F·g-1,而KC-800的比电容仅为248 F·g-1。这表明草酸钾和尿素的加入显著提高了多孔碳材料的比表面积和超级电容性能。电容贡献分析表明,KNC-800的双电层电容值和赝电容值均高于KC-800。KNC-800在电流密度为0.5 A·g-1时经过10 000次循环后仍能保持98.3%的初始比电容,表现出优异的循环性能。  相似文献   
8.
以廉价的胶态二氧化硅为模板,蔗糖为碳源,硫酸为预碳化试剂和硫源,通过硬模板法制备了相对廉价的硫掺杂多孔碳(SSC-T,T℃代表碳化温度)材料。采用多种表征方法对多孔碳材料的微观形貌、孔道结构、比表面积和表面硫物种进行了表征,探究了硫酸和碳化温度对多孔碳材料的微观形貌、孔道结构和比表面积的影响。结果表明,碳化温度对碳的孔结构、比表面积和硫元素的含量有显著的影响,其中900℃碳化得到的样品SSC-900具有最大的比表面积、孔体积和比电容,远高于未加入硫酸制备的碳材料SC-900,表明硫酸的加入可以提高碳材料的比表面积、孔体积,进而提高碳材料的比电容。与昂贵的有序介孔碳CMK-3相比,SSC-900具有成本更低、孔径更大和电容性能更好的优点。在以6.0 mol·L-1 KOH为电解质的三电极体系中,在0.5 A·g-1的电流密度下,SSC-900的比电容可以达到357 F·g-1,而SC-900和CMK-3的比电容分别仅为152和266 F·g-1。电容贡献分析表明,SSC-900的双层电容值和赝电容值均高于SC-900。此外,SSC-900在0.5 A·g-1的电流密度下循环10 000次后仍能保持98.4%的初始比电容。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号